Vectores Ortonormales
On octubre 15, 2021 by admin¿Qué es un Vector Ortonormal?
Se dice que un vector es normal si tiene una longitud de uno. Se dice que dos vectores son ortogonales si forman ángulos rectos entre sí (su producto punto es cero). Un conjunto de vectores se dice que es ortonormal si todos son normales, y cada par de vectores en el conjunto es ortogonal.
Los vectores ortonormales se utilizan generalmente como una base en un espacio vectorial. Establecer una base ortonormal para los datos facilita considerablemente los cálculos; por ejemplo, la longitud de un vector es simplemente la raíz cuadrada de la suma de los cuadrados de las coordenadas de ese vector en relación con alguna base ortonormal.
Descomposición QR
Una descomposición QR de una matriz real cuadrada A es el proceso de encontrar dos matrices Q y R tales que:
- A = QR
-
Q es una matriz ortogonal
- R es una matriz triangular superior
(si A es una matriz cuadrada compleja, o es una matriz rectangular, entonces Q será una matriz unitaria.)
Hay varios métodos para calcular la descomposición QR de una matriz, incluyendo el proceso de Gram-Schmidt, las transformaciones de Householder o las rotaciones de Givens. Cada método tiene ventajas y desventajas, por lo que los implementadores deben estudiar cada uno de estos algoritmos cuidadosamente para un problema determinado.
La descomposición QR se utiliza a menudo en la solución del problema de mínimos cuadrados lineales. También es la base de un algoritmo de búsqueda de vectores propios, acertadamente llamado algoritmo QR (aunque irónicamente, la forma moderna del algoritmo no implica realmente el cálculo de una descomposición QR).
Deja una respuesta